TRANSLATIONAL ONCOLOGY SUMMIT 2020

hosted by Champions Oncology

Fast-tracking C010DS-Zn:

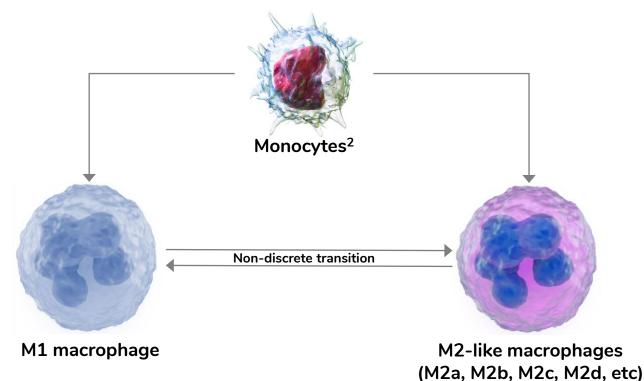
PARP1-agonist targeting cancer and M2-like macrophages

24 Sept 2020, 10PM (UTC+8)

Jinhyuk Fred Chung, PhD

CSO @ Xylonix

Overview


- M2-like macrophages (M2M) shown to drive the core pathologies of cancer and COVID19
 - Cancer metastasis
 - T cell suppression leading to immune escape
 - Hyperprogression phenomenon post PD-1/PD-L1 treatment
 - Severe forms of COVID19 and Multisystemic Inflammation Syndrome in Children (MSI-C) post COVID19 recovery
- Rationale-designed C010DS-Zn is a folate-ligand guided PARP agonist for triggering parthanatos in the following:
 - General solid cancers (via overexpressed FOLR-α and FOLR-β)
 - General blood cancers (via overexpressed FOLR-β)
 - M2-like macrophages and Tumor Infiltrating Macrophages (via overexpressed FOLR-β)
- Parthanatos is a programmed necrosis from hyperactived DNA repair response by PARPs with the advantages of:
 - High immunogenicity for robust immune response initiation
 - Precision targeting potential against wide cancer types with high mutation burden or mutagenic oncogenes such as mTP53
- Fast-track development of this previously unexplored anti-cancer mechanism by C010DS-Zn is being driven by:
 - High throughput ex-vivo screening against NGS-sequenced patient derived tumors and bioinformatic analysis for rapid identification of precision indication targets, further parthanatos mechanisms, and potential drug resistance mechanisms
 - In vivo tests using humanized mice for direct combination studies with pembrolizumab and other immunotherapeutic agents

Targeting M2-like macrophages (M2M) for treating cancer and COVID19

Defining M2-like macrophages¹

Generally pro-inflammatory Generally anti-tumor

- Phagocytic
- Produces TNFα, IL1β, **IL6**, IL12, NO, etc
- Acts as APC to CD4 T cell
- Stimulates CD8 T cell
- Direct tumor cell killing via NO
- Produces TNFα, IL1β, IL12, NO, etc

Generally anti-inflammatory Generally pro-tumor

- Non-phagocytic
- Produces TGF β , IL6, IL10, EGF, VEGF, cathepsins, etc
- Main component of Tumor Associated Macrophages (TAM)
- · Stimulates Treg
- Inhibits CD8 T cell
- · Promotes metastasis and angiogenesis

^{1.} Review: Funes et al (2018. lmmunology. https://doi.org/10.1111/imm.12910

^{2.} Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

M2M as the key target in treating cancer and COVID19

Cancer metastasis

ORIGINA

M2 macrophage-derived exosomes facilitate hepatocarcinoma metastasis by transferring $\alpha_M \beta_2$ integrin to tumor cells

Jindao Wu ∞, Wen Gao, Qiyun Tang, Yue Yu, Wei You, Zhengshan Wu, Ye Fan, Long Zhang, Chen Wu, Guoyong Han, Xueliang Zuo, Yao Zhang, Zhiqiang Chen, Wenzhou Ding ... See all authors ∨

First published: 28 June 2020 | https://doi.org/10.1002/hep.31432

Tumor Biology and Immunology

Cancer Research

M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer №

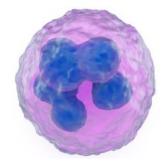
Jingqin Lan¹, Li Sun², Feng Xu¹, Lu Liu¹, Fuqing Hu¹, Da Song¹, Zhenlin Hou¹, Wei Wu¹, Xuelai Luo¹, Jing Wang³, Xianglin Yuan², Junbo Hu¹, and Guihua Wang¹

Article Open Access | Published: 16 May 2019

M2 macrophages promote NSCLC metastasis by upregulating CRYAB

Zhe Guo, Jing Song, Junxia Hao, Hui Zhao, Xiaohui Du, Encheng Li, Yanbin Kuang, Fuquan Yang, Wei Wang \boxtimes , Jiong Deng \boxtimes & Qi Wang \boxtimes

Cell Death & Disease 10, Article number: 377 (2019) | Cite this article


J Hematol Oncol. 2017; 10: 36.

PMCID: PMC5286803 PMID: 28143526

Published online 2017 Feb 1. doi: <u>10.1186/s13045-017-0408-0</u>

Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein

Yulei Chen, ¹ Siyuan Zhang, ¹ Qizhi Wang, ² and Xiaobo Zhang ^{⊠1}

M2-like macrophages

A common enemy in our fight against CANCER & COVID19

Hyperprogression post immunotherapy

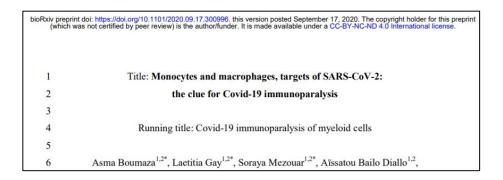
Severe COVID19 and MSI-C post COVID19

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.190140. this version posted July 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses

Willianne Hoepel^{1,2+}, Hung-Jen Chen³⁺, Sona Allahverdiyeva^{1,2,4}, Xue Manz⁵, Jurjan Aman⁵,

bioRxiv prep (which	rint doi: https://doi.org/10.1101/2020.09.17.300996. this version posted September 17, 2020. The copyright holder for this preprin was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
1	Title: Monocytes and macrophages, targets of SARS-CoV-2:
2	the clue for Covid-19 immunoparalysis
3	
4	Running title: Covid-19 immunoparalysis of myeloid cells
5	
6	Asma Boumaza ^{1,2*} , Laetitia Gay ^{1,2*} , Soraya Mezouar ^{1,2*} , Aïssatou Bailo Diallo ^{1,2} ,



Latest discoveries on the role of M2M involvement in COVID19

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.190140. this version posted July 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses

Willianne Hoepel^{1,2†}, Hung-Jen Chen^{3†}, Sona Allahverdiyeva^{1,2,4}, Xue Manz⁵, Jurjan Aman⁵,

Key discoveries

- COVID19 directly infects all monocytes and macrophages via "abortive infection", reprogramming them toward M2M without any cytopathic effects (Bounmaza et al., 17 Sept 2020)
- This reprogramming led to massive tissue infiltration by the M2M, and overproduction of IL6, IL10, and $TGF\beta$ the hallmark pathologies of severe COVID19
- An independent research further showed that the hyper-inflammatory responses in severe COVID19 cases were produced by M2M, stimulated by afucosylated anti-COVID19 IgG (Hoepei et al., 13 July 2020).
- Heopei et al. also showed that the cytokines released by the anti-COVID19 IgG stimulated M2M caused **microvascular thrombosis** and **endothelial damages**, providing the pathological explanations for the **autoimmune thrombosis** and the Multisystemic Inflammation in Children (**MSI-C**) post COVID19 recovery.
- This "two-component" pathology of COVID19 may pose a major hidden obstacle in current vaccine development efforts

Selective elimination of the COVID19-reprogrammed M2M is a promising approach for treating severe COVID19, stopping its long-term health effects, and safe use of the vaccines

C010DS-Zn: First-in-Class parthanatos inducer against cancer and M2M

Parthanatos and Xylonix approach

- Parthanatos is a programmed necrosis from PARP-hyperactivation that results in immunogenic cell death
- Parthanatos machinery is independent and orthogonal to that of apoptosis, reducing cross-resistance risks
- PARP-hyperactivation is a DNA-repair response, making cell types with higher mutation burden or mutagenic oncogenes more vulnerable.
- Xylonix has developed several folate-guided PARP agonist compounds that amplify Zn²⁺ pharmacology toward selective parthanatos induction in the target cells, from C005D-Zn to C010DS-Zn with varying potency
- Zn²⁺ pharmacology was chosen for its simultaneous inhibition of apoptotic caspases¹ in protecting PARP1 toward parthanatos

Oncotarget, 2018, Vol. 9, (No. 4), pp: 4485-4495

Research Paper
Assessment of folate receptor alpha and beta expression in selection of lung and pancreatic cancer patients for receptor targeted therapies

Jiayin Shen¹, Yingwen Hu^{1,2}, Karson S. Putt², Sunil Singhal³, Haiyong Han⁴, Daniel W. Visscher⁵, Linda M. Murphy⁶ and Philip S. Low^{1,2}

Published Online First December 1, 2009; DOI: 10.1158/0008-5472.CAN-09-2050 **Published Online First on December 1, 2009 as 10.1158/0008-5472.CAN-09-2050**

Immunology

Folate Receptor β Is Expressed by Tumor-Associated Macrophages and Constitutes a Marker for M2 Anti-inflammatory/
Regulatory Macrophages

Amaya Puig-Kröger, 1,2 Elena Sierra-Filardi, 1 Angeles Domínguez-Soto, 1 Rafael Samaniego, 3

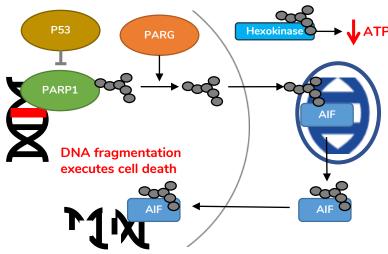
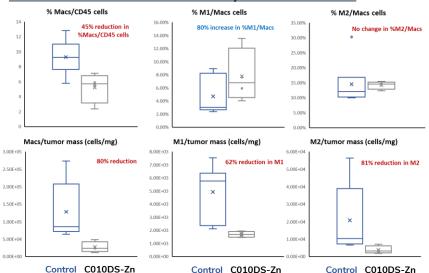


Table 2

Main features of apoptosis, necrosis and parthanatos.

	Apoptosis	Necrosis	Parthanatos
Plasma Membrane	Blebbing	Swelling and lysis	Lysis but no blebbing
ANV/PI assay	+/-	+/+	+/+
TUNEL assay	+	-	+
Caspase-3 activation	+	_	+ (not mandatory)
PARP dependence	-	-	+
AIF	Translocation to the nucleus (not always)	No translocation	Translocation to the nucleus

SOURCE: Soriano et al. (2017) DOI: 10.1038/srep41340


C010DS-Zn takes the center stage post COVID19

Xylonix parthanatos agents at a glance

	C005D-Zn	C008D-Zn	C010DS-Zn
In vitro anti-cancer IC50 (24h) ¹	290 μM Zn²+	90 μM Zn ²⁺	16 μM Zn ²⁺
In vitro anti-cancer IC50 (48h) ¹	63 μM Zn ²⁺	44 μM Zn ²⁺	0.7 μM Zn ²⁺
In vitro anti-cancer IC95 (48h) ¹	537 μM Zn ²⁺	100 μM Zn ²⁺	1.6 μM Zn ²⁺
In vivo anti-M2M effects	-	+	+++
In vivo toxicity observed (acute/repeat)	-/-	-/-	-/-

²Basal serum Zn²⁺ level in healthy individuals is about 150 μM

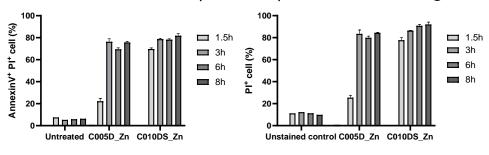
M2M reduction in tumor by C010DS-Zn³

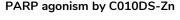
Xylonix response to the pandemic –fast track C010DS-Zn

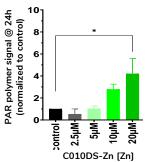
- Prior to the pandemic, C005D-Zn development was prioritized for its excellent safety profiles
- The pandemic brought forth an emergent need for an effective anti-M2M agent, lifting the potential regulatory concerns for C010DS-Zn's capacity to reduce M2M
- Given the clinical and regulatory bottleneck for new first-inhuman studies, Xylonix decided to fast-track C010DS-Zn for COVID19 application, with subsequent repurposing back to oncology use.

^{1.} In vitro murine cancer cell line tests performed at Invitrocue and at Champions Oncology, cell type undisclosed for future publication

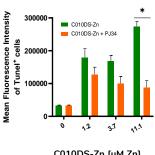
^{2.} Vale et al., (2014) Eur J Clin Nut. https://doi.org/10.1038/ejcn.2013.250

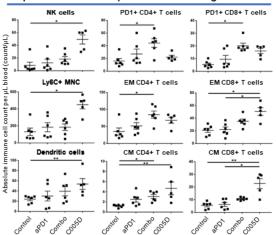

[.] In vivo murine cancer subQ xenograft model, with an undisclosed cell type and dosing amounts for future publication. The in vivo dosing did not show direct anti-tumor effect



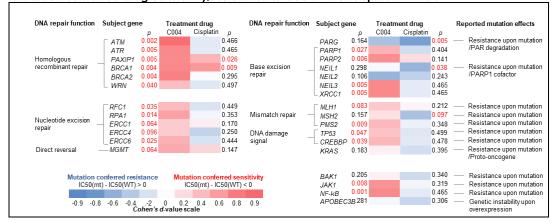

Breakthrough advantages of Xylonix parthanatos agents against cancer

Rapid target parthanatos in hours¹


In vitro kinetics of a cancer cell line parthanatos by C005D-Zn or C010DS-Zn @ 4X IC50


TUNEL signal intensity

C010DS-Zn [µM Zn]


Immune response initiation potential²

Peripheral blood leukocytes in CT26 bearing Balb-c mice

Broad precision indication potential³

Mutation conferred drug sensitivity/resistance to C004-Zn or cisplatin in vitro

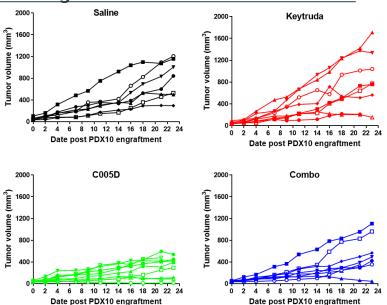
- In vitro murine cancer cell line tests performed at Invitrocue. Cell type undisclosed for future publication. 4X IC50 concentration applied in the kinetic study.
- In vivo murine cancer subO xenograft model using CT26 on Balb-c . performed at IMCB A*Star
- Analysis based on the 50 human cancer cell line screening at Crown Biosciences using C004-Zn

Overcoming the challenges of fast-tracking a First-in-Class



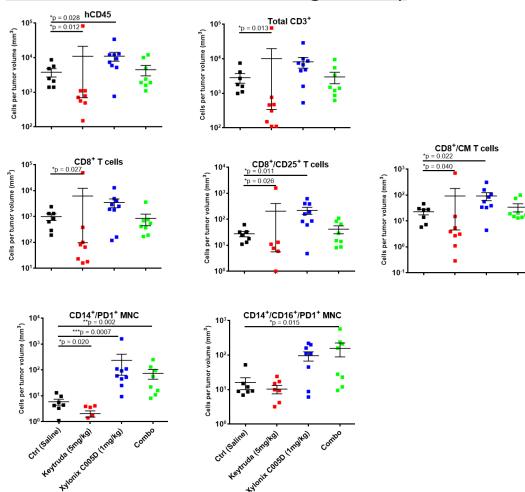
Breakthrough advantages of Xylonix parthanatos agents against cancer

"Gaining a clear understanding of how a drug works before it enters clinical trials is the intelligent route to drug discovery and could increase the likelihood for drug success."

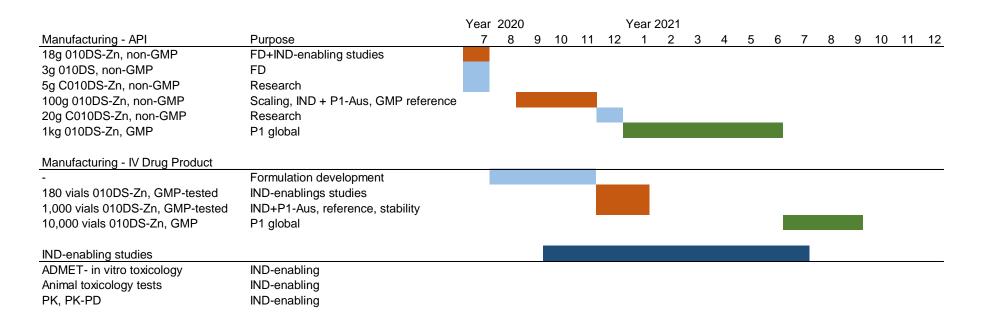

Mechanism matters. Nat Med 16, 347 (2010). https://doi.org/10.1038/nm0410-347

- First-in-Class drug development comes with unique challenges, especially with C010DS-Zn
 - The very mechanism of parthanatos toward the cell death execution is still new & unclear
 - No available literatures on the pharmacological benefits or side effects of using parthanatos against cancer or otherwise
 - Its wide-spectrum indication potential is overwhelming how much of it can be translated? And how do we define it?
 - Its secondary immunogenic anti-cancer mechanism adds further dimensions in consideration of future study designs, especially when considering combination studies with aPD-1 agents.
- Our answers to the hurdles
 - Aggressive use of ex vivo patient derived tumor (PDX) screening platform with bioinformatic analysis
 - Continuous translation: PDX ex vivo -> PDX in vivo (immunodeficient) -> PDX in vivo (humanized) validation
 - Utilization of humanized mouse in vivo tests for the immune response and mechanism validation

Importance of in vivo validation on humanized immunity: a case of C005D-Zn


Tumor growth kinetics of HCC on HuMice

A direct combination study using humanized mice between C005D-Zn and pembrolizumab revealed deleterious effects of macrophage immune response initiation when using pembrolizumab


- Previous syngenic studies using murine aPD1 did not display an anti-synergy in combination use
- It was later published by other groups that the IgG4(S228P) platform used by leading aPD1 agents was responsible for M2M-mediated reversal of the aPD1 into an immune suppressive agent via FcR interactions¹
- This became the basis of our focus on combination studies with pexidartinib and C010DS-Zn development

Characterization of tumor infiltrating immunity

Fast track development progress on C010DS-Zn

- So far we have been on-schedule since the start of the C010DS-Zn fast-track initiative
 - Early efforts mainly focused on CMC for the fastest availability of GLP/GMP supply
 - In view of the pandemic, we schedule to prepare sufficient quantities of GMP-grade APIs for collaborations
- Key milestones ahead are:
 - Publication disclosure in 4Q2020 on the anti-cancer effects and anti-M2M effects of C010DS-Zn
 - In vivo tests against live COVID19 strains

-END-